Friday, November 29, 2013

Climate change and biodiversity: towards connectivity conservation law in the EU

Many protected areas are badly suited to overcome climate change–induced shifts in species’ geographic ranges. Studies show that protected areas “have not been designed for efficient (or even complete) representation of species” (Hannah et al. 2007). Fixed protected areas alone will not be sufficient to safeguard biodiversity from the impacts of climate change. Hannah et al. show that between 6% and 22% of species in their analysis failed to meet representation targets for future ranges that take into account the impact of climate change, with a further increase expected under more severe climate change scenarios. Connectivity measures, such as the creation of corridors or stepping stones compensate for such losses. This is also reflected in the Millennium Ecosystem Assessment: “[c]orridors and other habitat design aspects to give flexibility to protected areas are effective precautionary strategies. Improved management of habitat corridors and production ecosystems between protected areas will help biodiversity adapt to changing conditions” (MEA 2005). A combination of several measures (enlarging areas, securing robust large areas, securing ecological connections between areas, and establishing real ecological networks) therefore seems to be the best approach to maximize the ability of nature to cope with the pressure of climate change on biodiversity.




The IUCN recently published a two volume publication titled ‘The Legal Aspects of Connectivity Conservation’ (IUCN 2013). Volume 1 gives a broad overview of current insights and understanding of connectivity conservation and explains through which legal mechanisms connectivity conservation can be achieved, taking examples from around the world, and focusing on land use planning law, development control law, voluntary conservation agreements and economic and market-based instruments. Volume 2 has a wealth of case studies of connectivity projects around the world. These projects range from local or regional projects, to nationwide or even continent wide connectivity projects. Examples of these are the nationwide ecological network in the Netherlands, the 3600km long corridor of the Great Eastern Ranges in Australia, the EU’s Natura 2000 network (including domestic projects in France, Germany, Spain, the UK, Finland and Slovakia) and corridors in Brazil, such as the Central Amazon Corridor.

Connectivity conservation and the management of connectivity conservation areas are emerging fields of scientific study and conservation management practice within the broader subject of nature conservation. In the most basic terms, connectivity conservation is a conservation measure in natural areas that are interconnected and in environments that are degraded or fragmented by human impacts and development where the aim is to maintain or restore the integrity of the affected natural ecosystems, linkages between critical habitats for wildlife, and ecological processes important for the goods and services they provide to nature and people. In fragmented ecosystems, wildlife corridors and other natural linkages such as green belts and large wildlife corridors have been common representations of connectivity conservation. The scientific emphasis takes into account connectivity needs across landscapes and seascapes, and in some cases even across continents, where necessary to maintain or restore specific linkages for habitat or species populations, or to maintain or restore important ecosystem processes. Scientific study and conservation practice have made important strides in understanding and applying connectivity conservation across a range of scales and functions.

The overarching conclusion from the research and analyses undertaken for this project as presented in Volume 1 of the report is the need for countries to become increasingly alert to their connectivity conservation needs, undertake connectivity planning, and initiate actions using existing mechanisms and opportunities as much as possible to negotiate and protect critical connectivity areas before they are lost to development. To support this process, a related conclusion is that a wide array of different legal instruments and tools already exist in many legal systems to begin to promote and implement science-based connectivity actions in priority landscapes/seascapes and local sites. Countries should start with these tools, using the best scientific information available, before development pressures make conservation or restoration no longer economically or political feasible. As experience is gained working with communities and landholders, and managing for connectivity conservation, a foundation of knowledge and support can be built for amending or enacting new legislation, as needed, to strengthen and integrate connectivity conservation authority into legal frameworks. Opportunities to use existing law and policy instruments should not be delayed by those efforts. It also is important to recognize that the law, by its nature and function, aims for clarity, certainty, and clearly defined processes and criteria for achieving specific goals and objectives. These features are essential for societies to have orderly interactions and effective future planning. In contrast, connectivity conservation is a tool for adapting to change due to dynamic factors related to current and new threats to protected areas, biodiversity and ecosystems, and to global change including climate change. Bringing the law and connectivity together requires that the law incorporate some flexibility in order for management to be able to respond to changing connectivity conservation needs and that connectivity conservation actions be based on the best available scientific information (in both the natural and social sciences) so that management actions and commitments are well founded for the foreseeable future. Law has several mechanisms that can provide flexibility. These include requirements for periodic review and revision of management plans, regular monitoring based on ecological criteria, the development of performance measures to help assess and evaluate whether management plans are achieving their intended purposes, and decision-making mechanisms to monitor and incorporate new scientific information relevant for connectivity conservation management as it becomes available.

For Europe, it is clear that Natura 2000 alone does not constitute a coherent network in the sense of truly interconnected protected areas throughout an entire country or throughout the whole of the EU. Additional, domestic instruments, mainly in the field of nature conservation law and spatial planning law are needed to create connectivity between the Natura 2000 sites. Even in case domestic instruments are applied, in addition to the EU’s Natura 2000 legal framework, to achieve connectivity, we still cannot be certain that the network remains just an ecological network on paper. Much depends on the actual application of all the laws and policies on activities within the areas that constitute the network. Farmers and other local landowners have to refrain from harmful activities, and/or have to actively manage the area to support the area’s connectivity function. Financial incentives are needed to make this happen. Fortunately, we can observe that EU Member States increasingly do apply such domestic instruments in order to achieve connectivity. Domestic policies in various Member States, such as the Netherlands and the UK, provide for additional connectivity instruments that add to the Natura 2000 network. Domestic subsidy schemes across the EU exist as well, and the EU’s LIFE+ scheme provide important financial incentives for connectivity. This, however, is largely due to national policy initiatives, and based upon national law instruments. At the EU level, there seems to be a slow movement towards accepting that connectivity measures are legally required by the current texts of the Birds and Habitats Directive. The Alto Sil judgment of the EU Court of Justice (Case C-404/09 European Commission v Spain), as well as a range of policy documents go into that direction. In my view, however, there is much to say for more explicit regulating connectivity (and restoration) requirements in binding legal instruments, such as the EU Habitats Directive. There is a fear that altering the current text of the Habitats Directive will open Pandora’s Box, leading to a decline of the impact of this Directive on nature conservation in Europe. Fear, however, generally is a bad advisor. The Habitats Directive is getting outdated, caught up by climate change and by large scale landscape fragmentation in Europe.

Tuesday, November 19, 2013

Climate change and land grabbing in Africa

Since 2008, civil society groups and transnational networks have drawn attention to one discrete source of conflict that is on the rise in the wake of resource scarcity: transnational agro-investment (Oxfam 2011; GRAIN 2012; FOE 2012). In practice this form of investment revolves around the acquisition of large areas of land, usually located in the global South and on a doubtful legal basis, often labeled as ‘land grab’. Governments of poor states are eager to welcome investments, even though there is no clear sight on beneficial long-term effects of associated changes in land use (FAO, 2012; ILC, 2012). Most contracts for these long-term transactions are effectuated between foreign investments (often government driven) and national governments that control and own the land. Some (not all) foreign investors are driven primarily by reasons that are related to climate change (we can call this ‘climate induced transnational agro-investments’). First, countries that foresee reduced domestic availability of suitable land for food production due to climate change and rapid population growth try to avoid future food shortage and high prices by producing food overseas (China being an example here). Second, most developed countries have set targets in their energy policies in attempts to cap greenhouse emissions. To meet these targets they are searching outside their own jurisdiction for suitable and affordable land to grow crops for biofuels and forestation. There is, however, another link between land grabbing and climate change: intensified land use for the African host countries not only impairs immediate food and water availability at the local level, but also reduces local communities’ resilience to engage with future climate change (hence, reducing their adaptive capacities). This, in turn, leads to serious and often irreversible socio-economic impacts, such as the displacement of local communities. Climate-induced transnational agro-investment has been on the rise in several countries in Africa, such as Ethiopia and Uganda, where large areas of fertile farmland have already been earmarked for long-term transfer to foreign investors. Companies from China, Germany, India, Israel, Pakistan, Saudi Arabia, UAE, UK, The Netherlands, Norway and the USA have concluded land lease agreements for biofuel projects with government. Tensions and conflicts are looming as a result of discontent created by the marginalization and loss of property rights of the local communities as well as lack of their participation and a benefit-sharing scheme for use of resources. There already are numerous instances of displacements of the local population as well as clearing of forests and related resources on which the livelihood of the local population depend. These activities of the investors have caused widespread fear and threats to the livelihood of the local communities and have already led to conflict in some localities. An early example of such a conflict in Uganda is the so called FACE-case. The Forests Absorbing Carbon-dioxide Emissions Foundation (FACE) is a Dutch organization that entered a partnership with Uganda Wildlife Authority (UWA) to carry out a reforestation project in Mount Elgon National Park, commencing in 1994. The project involves planting of trees inside the boundaries of Mount Elgon National Park. The idea was that FACE assists with the planting of 25,000 ha of trees to absorb carbon dioxide so as to offset emissions from a new 600 MW coal-fired power station in the Netherlands. A year before the project started, the government declared Mount Elgon a National Park and the people living within its boundaries lost all their rights. People residing in the designated area were evicted without any compensation, and court cases aimed at protecting the community interests, did not yielded much. This resulted in conflicts, where communities deliberately destroyed the trees in the park. Evictions have continued throughout the 2000s, without compensation. Although there exists an assumption that the investment is legally secured by contract law, pertinent legal questions arise about the compatibility of property rights, environmental norms, human rights and participation rights. In general, five sources of law apply to foreign agro-investment: (a) National law of the host state; (b) Customary law of local and indigenous people; (c) International law (treaty and customary law, e.g. investment law); (d) Social responsibility norms and codes of conducts; (e) National law of the investor’s home state. It is unclear, however, how the legal norms of this complex multilevel system interact in practice. Such legal questions regarding changes in land change within the bigger climate change context have largely escaped the attention of environmental, human rights and investment lawyers to date. Legal analyses of the phenomenon of foreign direct investment and its impact on local communities’ rights are scarce. Moreover, evidence shows that legal entitlements and rights are not evenly distributed. In general it can be stated that while investors’ interests are legally enforceable and thereby protected, the interests of local and indigenous people are mostly regulated by ‘soft norms’- e.g. the principle of free prior and informed consent that in practice is extremely difficult to enforce. As climate change threatens to become an ever more acute and serious problem, and population pressure increases, foreign agro - investment is an increasing source of conflict. This being so, we can no longer postpone thinking about the legal nature and the legal implications of climate-induced foreign agro-investment. One promising legal pathway is to focus on the legal agreements through which long-term land deals are being completed. These contracts or bilateral investment treaties contain critical information that determines the scope and terms of the investment deal, including the distribution of risks among stakeholders. The nature of the parties signing the contract (private or public) and through what process, significantly impacts on the extent to which local communities are involved and can make their voices heard. Practice suggests that local communities and rural landowners are rarely consulted in negotiations. Likewise, the terms of the contracts could have profound and possibly irreversible consequences for food security and stability in the host countries. It is hence crucial that contractual arrangements also address both environmental and social issues (e.g. job creation, infrastructure development). This is an area where linking contract law to customary, national, and international law and codes of conduct is particularly important for a full understanding of the implications of the contracts. Recently, several codes of conduct and principles for responsible investment (e.g. World Bank, FAO, IFAD, the UNCTAD, OECD, IFC standards, Ruggie Principles in Responsible Contracts, etc.) have been added at the international level to the existing body of law regulating foreign agro-investments. Similarly, at the regional level there has been increasing activity concerning promoting responsible investment; the African Land Policy Framework and Guidelines Initiative that is being led by the African Union for example addresses the issue. However, how these soft norms relate to individual contracts is far from clear and needs to be explored. It appears that domestic practices throughout Africa are quite diverse, ranging from no relationship whatsoever, to, for example, an explicit coverage of responsible and sustainable investment clauses in all contracts and the duty to have each contract ratified by parliament, as is the case in Liberia. Zambia has largely regulated foreign agro-investments, with the aim to guaranteeing continued supply at fair prices to local markets and the use of local farmers who have to earn a decent salary. A search for best practices in Africa is a good way to start researching effective regulatory frameworks for responsible and sustainable transnational agro-investments!

Friday, September 6, 2013

Shale gas debate finally kicks off in the Netherlands

Fifteen years after the first economical shale fracture in the United States, the debate on shale gas extraction has finally reached full speed after the publication, in August 2013, of a research report by three consultancy firms lead by Witteveen + Bos, on the potential risks and consequences of shale gas and coal seam gas extraction in the Netherlands. In the report for the Dutch government, the researchers reviewed the existing literature on the impact of shale gas extraction and “translated” the findings to the Dutch situation. Most of the information on the impact of shale gas extraction is from experiences in the US and the UK. The comprehensive report focuses on all possible consequences, such as water use, underground impact on the soil, methane emissions and the impact on the carbon footprint, pollution of the environment (including groundwater) by fracturing fluid and flowback water, noise and light pollution from installations, flaring, safety issues, earthquakes and subsidence. Generally, the report concludes that most if not all of these risks can be managed by setting strict permit conditions. Unlike in the US, the Dutch shale gas reserves are at great depth, well below ground water aquifers, and, also unlike in the US, in the Netherlands there already exists an extensive regulatory system that sets strict rules. Flowback water, for instance, cannot be stored in open basins, but has to be stored in closed tanks that are stored on watertight floors as a consequence of EU waste water law. Although the report looks sufficiently overarching and detailed, it also gained criticism. It was for instance criticized for its selected use of sources. Professor Jan Rotmans, in the Dutch newspaper Trouw (29 August 2013) stated that the report heavily relied on data coming from the industry (75% of the data used is from industry related sources), rather than on data from more independent sources. In addition, the lack of data is usually interpreted in a ‘positive’ way, i.e., concluding that a certain impact is not problematic, while in fact we do not know because of lacking data. Applying the precautionary principle would have led to the opposite conclusion in such a situation! Unfortunately, the Minister decided to grant the research project to a consortium of three private companies, one of which is Fugro, which states on its website: ‘Fugro’s activities (…) are primarily aimed at the: oil and gas industry, construction industry, mining sector’. On such a sensitive issue, it would have been better for the Minister to grant the project to a consortium of universities rather than of private businesses with ties to the shale gas industry, or at least have a university team lead the consortium. Another problematic feature of the report is that it does not focus on specific local conditions. This is a bit strange because a) the government selected the three locations on which exploratory drillings are to take place long ago (2010), and b) the report argues that local zoning requirements are needed to protect specific sites, such as Natura 2000 sites (protected areas under the EU’s nature conservation laws) and groundwater protection areas (in use for drinking water supply), and probably also (although not specifically mentioned in the report) other types of protected areas, such as water storage areas, silence areas, and national parks. The report also suggests to protect buffer zones around such protected areas, without detailing how big these have to be. Given the fact that populated areas probably have to be avoided as well, it would have been interesting to test what drilling options remain. By leaving a lot of issues to the local level, authorities resisting shale gas extraction have an immense opportunity to block drilling, even in case the national authorities granted concessions. We already see developments going into this direction: a majority of politicians of the province of Noord-Brabant in which two of the designated exploration locations are located, have announced to prohibit shale gas exploration in their province in the Provincial Environment Ordinance. It is clear from the report that shale gas extraction is only acceptable under strict legal conditions. The report does, therefore, constantly refer to laws and regulations that are or should be in place to minimize the negative impact of fracking. A full assessment of current laws is lacking, though. Current Dutch mining legislation does not explicitly deal with fracking, simply because it predates the large scale use of this technology. An earlier EU investigation of existing environmental laws, by a consortium that, interestingly enough, also included Witteveen + Bos, found many gaps and shortcomings. It is unlikely that all of these do not exist in the Netherlands. The report, furthermore, relies on law in the books rather than on the law in action. Although there are supervising authorities, both on the implementation of mining legislation and environmental legislation, much depends on the way the various authorities involved deal with their decision-making and monitoring and enforcement powers. The debate will not be over for a while. This is a good thing. Before investing billions of euros into new infrastructure to extract fossil energy resources, it is worthwhile to rethink whether such investments perhaps are more appropriate in the dwindling Dutch renewable energy sector. According to the 2013 Renewable Energy Progress Report, the Netherlands is on a snail ride, moving from a 2,4% share in 2005, to a 3,8 share of renewable energy sources in the total energy consumption in 2010. Compare this to some of nearby countries, such as Germany (11%), France (13.5%), and Denmark (22.2%)… In 2012, the share went up to 4,7%. In this pace, it is highly unlikely that the Netherlands will meet its target for 2020 of 16%... Investing in shale gas extraction will not speed up this process.

Wednesday, August 7, 2013

Research Handbook on Climate Change Adaptation Law

This is the cover of the Research Handbook on Climate Change Adaptation Law, that was just published by Edward Elgar Publishers. So far, legal research has mostly focused on mitigation. Some adaptation topics are well covered through individual papers and law journal articles. This is especially true for adaptation in the fields of water management and biodiversity conservation, coastal adaptation, and climate induced displacement. Other topics are not, or hardly, covered, if so only in scattered papers. With this book I want to provide a full overview of current adaptation law scholarship on all topics, in all relevant sectors. To date there is one other book that also addresses the whole emerging field of adaptation law: 'The Law of Adaptation to Climate Change: United States and International Aspects', edited by Michael Gerrard and Katrina Fischer Kuh, published by the American Bar Association. As the title indicates, this book as a primary focus on the US. My book takes a transnational perspective, i.e., an approach which is detached from a specific domestic legal system, but instead focuses on generic issues, using examples from across the world. In the introduction, adaptation and its various forms are explained, as well as the relationship between adaptation and mitigation, and the main questions that are addressed in the book: What are the legal challenges and barriers to climate change adaptation and how can they be overcome? What can be done within existing legal frameworks, and where are new or adapted frameworks needed? The second chapter gives an overview of the role of adaptation in current international and regional climate law and policy. The third chapter, by Rosemary Lyster (University of Sydney), can also be seen as an introductory chapter as it deals with justice issues. Then, we the book dives into a series of more specific topics: climate change induced displacement (Mariya Gromilova & Nicola Jägers, Tilburg Law School), adaptation and compensation (Michael Faure, Maastricht University), adaptation and disaster law (Dewald van Niekerk, North West University), adaptation and public health law (Lindsay F. Wiley, Washington College of Law), adaptation and agricultural and forestry law (Robert W. Adler, University of Utah), adaptation and water law (by me), adaptation and marine and coastal law (Tim Stephens, University of Sydney), adaptation and biodiversity law (Arie Trouwborst, Tilburg Law School), adaptation and land use planning law (Keith H. Hirokawa, Albany Law School, and Jonathan Rosenbloom, Drake Law School), adaptation and green building (Keith H. Hirokawa and Aurelia Marina Pohrib, Albany Law School), adaptation and environmental and pollution control law (me again), adaptation and electricity infrastructure (Rosemary Lyster and Rebekah Byrne, University of Sydney). The contributions to this book show that, although adaptation receives a growing amount of attention, both in practice and in academia, adaptation law is only just starting to emerge. In most instances, there are some plans or policies aimed at adaptation in various fields, usually those fields that already have to deal with increasing problems, such as storm water management and flood management. An adaptation of the laws still has to start. It is obvious that existing laws have to be assessed on their ability to facilitate adaptation. This is a huge undertaking because there is hardly any field that is not affected by climate change. All laws and regulations that in any possible way organize society have to be ‘climate proofed’, laws regarding agriculture, forestry, fisheries, energy and telecommunications infrastructure, water management, air quality, industrial installations, nature conservation, buildings, transport infrastructure, public health, migration, disaster management, coastal defenses, etc. Although research on adaptation law, so far, has mainly concentrated on specific sectors, some overarching conclusions can be drawn: every field faces specific climate change impacts and needs specific adaptations, adaptations that also need to vary according to local circumstances. In various chapters, examples are presented of how existing laws are effectively applied to create resilience or to otherwise prepare for extreme weather events or other climate change impacts. Often, though, existing legislation needs to be adapted so that the competent authorities are obliged to plan for and take adaptation measures. The EU, for example, has just embarked on an ambitious programme to climate proof all existing Directives and Regulations. In 2013, the first climate proofed piece of EU legislation is expected to be adopted (a revised Directive on environmental impact assessment). It will probably take at least ten years before the entire body of EU law has been climate proofed. Similar programmes will have to be set up on all levels of government: international, regional, national/federal, provincial/regional and local. Since many impacts of climate change will be local impacts, and since these impacts can greatly vary from one location to another, it is important that at the local level the authorities take the lead in local adaptation programmes. At that level, planning law probably is the most important instrument in the authorities’ adaptation toolkit. Higher levels of government have to ensure that the authorities at the local level have sufficient room for manoeuvre. For adaptation issues at the higher levels, i.e., at the level of transboundary river basins, national or transboundary coastal areas, international marine areas, regional or international migration and others, international institutions will have to take the lead and coordinate international adaptation efforts. At all levels, issues of equity and justice arise and need to be incorporated into the law-making process. And yes... this blog will become more active as of now!!!